PERUBAHAN MORFOLOGI KATUP MITRAL PADA DEMAM REMATIK AKUT DAN PENYAKIT JANTUNG REMATIK
Abstract
Rheumatic fever and rheumatic heart disease remains a significant cause of cardiovascular disease in the world, especially in industrial countries and developing countries. Rheumatic heart disease is the most serious complication of rheumatic fever which is characterized by the occurrence of heart valve defects are most of the mitral valve, aortic and tricuspid followed. Valvulitis or inflammatory process in the tissue of the mitral valve causing edema of the valve leaflets and chordae tendineae, causing disruption valve closure is causing mitral regurgitation. Eventually fibrosis and calcification of the valve that causes stiffness and the valve leaflets into mitral valve stenosis. The earliest possible introduction of cardiac involvement in rheumatic heart disease is an important part in the prevention of further heart damage.
Keywords
Full Text:
PDFReferences
WHO. Rheumatic fever and rheumatic heart disease: report of a WHO Expert Consultation, Geneva, 29 Oct-1 Nov 2001: Geneva; WHO Technical report series No.923; 2004;p1-65.
Soeroso S. Tinjauan prevalensi demam rematik dan penyakit jantung rematik pada anak di Indonesia. Semarang. Naskah Lengkap Simposium dan Seminar Kardiologi Anak.1986;5;1-11.
Levine R. A et all. Mitral valve disease, morphology and mechanisms. Nature reviews cardiology.2015;2-4.
Zwikker GL, Delemarre BJ, Huysmans HA. Mitral valve anatomy and morphology. Journal of cardiology surgery.1994;9;255-61.
Catherine M Oto, Bonow RO. Valvular Heart Disease, a companion to Braunwald’s Heart Disease.2004;1447-56.
Jeffrey J, Silbiger, MD, Raveen B, MD. Contemporary Insights into the Functional Anatomy of the Mitral Valve. American Heart Journal. 2009;158(6):887-895.
Mann DL, Zipes DP, Libby P, Bonow RO. Mitral valve disease. Braunwald’s Heart Disease. Textbook of cardiovascular medicine. 2015; 10; 1469-94.
Guilherme L, Cury P, Demarchi LMF, Coelho V, Abel L, Lopez AP et al. Rheumatic Heart Disease : Proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. The American Journal of Pathology, 2004 ;165 ; 1583-91.
Carapertis J, Brown A, Maguire G, Walsh W. Diagnosis and management of acute rheumatic fever and rheumatic heart disease in Australia; National Heart Foundation of Australia; 2006; 50-59.
McCarthy KP, Ring L, Rana BS. Anatomy of the mitral valve: Understanding the mitral valve complex in mitral regurgitation. European Journal of Echocardiography. 2010;11:1-7
Barber JE, Kaspe FK, Ratliff NB, Cosgrove DM, Griffin BP, Vesely I. Mechanical properties of myxomatous mitral valves. Journal Thorac Cardiovascular Surgeon. 2001; 122: 955 – 62.
Grande-Allen KJ, Calabro A, Gupta V, Wight TN, Hascall VC, Vesely I. Glycosaminoglicans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology 2004 : 14 : 621– 33.
Roberts S, Kosanke S, Dunn ST, Jankelow D, Duran CMG, Cunningham MW. Pathogenic mechanisms in rheumatic carditis : focus on valvular endothelium. Journal of infectious disease. 2001; 183 ; 507-11.
Wooley CF, Baker PB, Kolibash AJ, Kilman JW, Sparks EA, Boudoulas H. The floppy, myxomatous mitral valve, mitral valve prolapse, and mitral regurgitation. Prognosis Cardiovascular Disease 1991; 33: 397– 433.
Cunningham MW. Streptococcus and rheumatic fever. Curr Opin Rheumatol. 2012. 24(4): 408–416
Allen, D Hugh et al. Moss and Adams’. Heart disease in infants, children, and adolescents. 2008; 62; 876-97.
Nevin M, Habeeb M. Iman s, Hadidi A. ongoing inflammation in children with rheumatic heart disease. Cardiology in the young. 2011; 21; 334-39.
Veinot JP. Pathology of inflammatory native valvular heart disease. Journal of Cardiovascular Pathology. 2006;15;243-51.
Rajamannan NM et al. Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Circulation. Journal Of American Heart Association. 2005; 111: 3296-301.
Deckers MM et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology. 2002;143:1545–553
DOI: http://dx.doi.org/10.32883/hcj.v5i2.779
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
HUMAN CARE JOURNAL
Published by Universitas Fort De Kock, Bukittinggi, Indonesia
© Human Care Journal e-ISSN : 2528-665X P-ISSN : 2685-5798